STARFISH SAPONINS III. A NOVEL STEROIDAL SAPOGENIN, 17β-METHYL-3β,6α-DIHYDROXY-18-NOR-5α-CHOLESTA-9(11),13-DIEN-23-ONE, FROM THE STARFISH Astropecten aurantiacus⁺

F. De Simone, A. Dini, L. Minale^{*} and C. Pizza Istituto di Biorganica, Facoltà di Farmacia, Università di Napoli, Via L. Rodinò, 22 - Naples, Italy.

R. Riccio

Laboratorio per la Chimica M.I.B. del C.N.R., Via Toiano n. 2, Arco Felice - Naples, Italy.

In continuation of our work¹ on starfish saponins, we report the isolation of the hitherto unknown 17β -methyl- 3β , 6α -dihydroxy-18-nor- 5α -cholesta-9(11)-13-dien-23-one (1) from the sapogenin portion of Astropecten aurantiacus, and show that it is an artefact produced during acid hydrolysis. Compound 1 appears to be identical with the partially characterized calcarigenin, produced by acid hydrolysis of the calcarsaponin isolated from Patiriella calcar². Mass and i.r spectra of calcarigenin diacetate, reported by the authors in graphic form², were superimposable with the corresponding spectra of 2^3 .

^{*} This contribution is part of the progetto finalizzato "Oceanografia e Fondi Marini", C.N.R., Roma.

Saponins were extracted by using the procedure of Gilgan $et \ al.$ 4 and purified by silica gel chromatography to afford in the 1 : 1 CHCl₃ -CH₃OH fractions a saponin mixture (ca. 0.07% from the dried whole body). This material was hydrolyzed (2N-HCl in benzene-EtOH-H₂O at reflux for 16 h⁵) and the aglycone mixture was resolved into four fractions by chromatography on silica gel using chloroform and increasing amount of ethyl acetate. The less polar fraction (ca.15% of the total sapogenin mixture) further purified by reverse phaese h.p.1.c. (C-18 microbondapack, CH₃CN : H₂O, 4 : 1) was homogeneous in g.1.c. (2.5% OV-1, 250°, as TMS ether) and had a retention time of 0.96 (1.0 = cholesterol TMS ether) much shorter than those of the "normal" $C_{27}-3\beta,6\alpha$ -dihydroxy-23-oxosteroids TMS ethers (e.g. 4, rt = 2.07; 5, rt = 2.38; 6, rt = 1.87). While the mass spectrum of the genin 1, oil $[\alpha]_{\rm D}$ - 2.8°, did not show the molecular ion at m/e 414, the composition $C_{27}H_{42}O_3$ could be assigned to 1 by a) the very small molecular ion at m/e 498 observed in the spectrum of the diacetate 2^3 , consistent with the composition $C_{31}H_{45}O_5$; b) proton resonance decoupled and single frequency off-resonance decoupled ¹³C-n.m.r. spectra (Table I); and c) high resolution measurements on the intense ions at m/e 285 (73%) and 287 (65%) (C19H2502 and C19H2702, calculated 285.1854, 287.2010; observed 285.1868, 287.2031) in the spectrum of 1 and attributed to M^+ - side chain with and without 2H transfer. Consecutive losses of two molecules of water from the $C_{19}H_{27}O_2$ fragment suggested the presence of two hydroxyl groups in a tetracyclic nucleus containing two double bonds [fragments at m/e 269 (100%) and 251 (20%). The ketonic nature of the remaining oxygen atom was demonstrated by an i.r. band at 1705 cm^{-1} and the ¹³C-n.m.r. signal at 211.4 ppm; the intense fragment at m/e 85 (50%, \sim C=0), already observed in the mass spectrum of dihydromarthasterone 4⁶, suggested the oxo group to be located at C-23. In agreement with this assignment are 13C-n.m.r. frequencies for C-22 and C-24 (52.4 & 52.6, t) in excellent analogy with corresponding signals at 50.6 and 52.6 in 4 (Table 1).

The 270 MHz ¹H-n.m.r. spectrum of the genin 1 depicted two tertiary methyl (1.00 and 1.04 ppm, s, 10-Me and 17-Me) three secondary methyl (0.84, 0.88 and 0.89, d, J = 6Hz), two carbinol methine [3.62 (c, 2H) shifted to 4.69 (W_2^1 = 20Hz; H-3) and 4.89 (ddd, J = 10.5, 10.5, 5.4Hz; H-6) in the diacetate 2] and one olefinic methine (5.47, W_2^1 = 6Hz). These data, along with the ¹³C-n.m.r. spectrum (one HC= at 114.4 and three C= respectively at 135.1 s, 136.5 s and 144.3 s) indicated the presence of one trisubstituted and one tetrasubstituted double bond. The cospicous absence in the ¹H-n.m.r. spectrum of the absorption in the range of 0.6-0.8 ppm, typical of the 13-Me protons in a steroidal nucleus, together with the presence of a 3H singlet at 1.04 ppm strongly suggested the presence of a perturbation in the immediate sourronding of C-13. Apart this unusual feature the general appearance of the ¹H-n.m.r. spectrum suggested a $\Delta^{9(11)}$ 38,6 α -dihydroxysteroidal partial structure, common for many asterosapogenins⁷. Oxidation of 1 with Jones reagent gave a triketone (3), M⁺/e 410, which was transparent in u.v. and showed a strong i.r. band at 1705 cm⁻¹; this transformation was accompained by changes in the resonance

		<u> </u>			-	,	_	•	~	1.0			10	. ,
Compound	1	2	3	4	5	ь	/	8	У	10	11	12	13	14
1	35.5	30.9	71.0	32.7	50.6	69.5	42.5	34.3	144.3	38.1	114.4	30.9 ^b	135.1 ^c	136.50
4^{a}	35.7	30.9	70.9	32.7	49.8	69.1	42.2	35.3	145.5	38.2	116.6	41.7	41.2	53.5
4-diAc ^a	35.5	27.3	73.1	28.9	46.8	72.2	38.4	35.7	144.7	38.4	117.5	41.8	41.3	53.6
	15	16	17	18	19	20	21	22	23	24	25	26	27	
1	24.0	31.5 ^b	46.5	24.5	18.3	34.7	15.2	52.4 ^d	211.4	52.6 ^d	24.6	22.6	22.6	
₄a	25.3	28.5	56.3	11.7	19.3	32.3	19.5	50.4	210.9	52.6	24.5	22.6	22.7	
4-diAc ^a	25.2	28.5	56.3	11.7	19.1	32.4	19.5	50.5	211.0	52.7	24.6	22.6	22.7	

TABLE I. - Carbon-13 Chemical Shifts (ppm, TMS=0) of 1, 4 and 4-diAc

a. - ¹³C signals in 4, isolated from Marthasterias glacialis⁶, were assigned by means of single-frequency off-resonance decoupling techniques, from comparison with the published data on the 5α-cholestane-3β,6α-diol resonances¹¹, and from comparison of the spectrum of 4 with that of its diacetate (4-diAc), which allowed differentiation between C-5 and C-14 and between C-7 and C-12.

b,c,d.- Assignments may be reversed.

frequencies of the 10-Me protons $(1.00 \rightarrow 1.16 \text{ ppm})$ and the olefinic proton $(5.47 \rightarrow 5.70 \text{ ppm})$ which closely paralleled those reported for 4^6 . An intense fragment at m/e 95 in the m.s. of 1 (38%; one hydroxyl in ring A and the other at position 6^8), and the comparison of the 13 C-n.m.r. data of 1 with those of 4 (Table I) strongly supported this assignment. The comparison of the 13 C-n.m.r. spectra also provided convincing evidence for the presence in 1 of a 23-oxosubstituted "conventional" C₈ side chain. All above evidence required a rearranged steroidal structure and 1 seemed the most reasonable.

Formation of 17β -methyl- Δ^{13} -olefins from reactions that were initiated by the ionization of a 17α - or 17β -linkage or that would create C-17 cation by the protonation of a 17,20 double bond has been reported⁹. So we treated the 3β , 6α -dihydroxy- 5α -cholesta-9(11),17(20)-dien-23-one β , one of the major genin from the same starfish *A. aurantiacus*¹⁰, with aqueous 2N-HCl under reflux and obtained 1 without recover of the starting β .

On the basis of the above accumulated evidence, the structure of the novel genin is thus established to be 17β -methyl- 3β , 6α -dihydroxy-18-nor- 5α -cholesta-9(11), 13-dien-23-one (1). Formation of both 1 and 6 during acid hydrolysis of the saponin mixture is due to the reaction conditions (HCl in benzene-EtOH-H₂O at reflux), when the saponins were hydrolyzed by aq. 2N-HCl at reflux for 2 h very little of 6 was formed and 1 became the major genin. The genuiness of the many reported asterosapogenins is a matter of discussion. It has recently been reported⁷ that acid treatment of 8, obtained by enzymatic hydrolysis of the total saponin mixture of *Acanthaster planci*, produces 7, previously isolated from *A. planci*⁸, and the 3β , 6α -dihydroxy- 5α -pregna-9(11)-en-20-one (9), hitherto isolated non only from *A. planci* but also from other species of Asteroidea⁷. The authors⁷ therefore consider that 20-hydroxy steroids are the true sapogeno's whilst aglycons such 7 and 9 may be artefacts produced during acid hydrolysis. We suggest that in addition to 1

the genin β may also be an artefact originating from a 17-hydroxyprecursor during acid hydrolysis.

ACKNOWLEDGEMENTS.- We wish to thank Professor Y. Shimizu (University of Rhode Island, U.S.A.) for advice and Professor R. H. Thomson (University of Aberdeen, U.K.) for providing high resolution mass spectra.

REFERENCES

- L. Minale, R. Riccio, F. De Simone, A. Dini, C. Pizza e E. Ramundo, Tetrahedron Letters 2609 (1978); L. Minale, R. Riccio, F. De Simone, A. Dini and C. Pizza Tetrahedron Letters (submitted)
- 2. J. A. Croft and M. E. Howden, Comp. Biochem. Physiol. 48B, 535 (1974).
- 3. m. s. of 2: m/e 498 (M⁺, very small), 438 (M⁺ CH₃CO₂H, 2%), 436 (3), 378 (M⁺ 2CH₂CO₂H, 8%), 369 (37), 311 (100), 309 (15), 251 (37), 95 (7), 85 (10), 81 (19), 57 (16), 55 (9), 43 (22), 41 (10).
- 4. M. W. Gilgan, R. K. Pike and J. W. ApSimon, Comp. Biochem. Physiol. 54B, 561 (1976).
- 5. W. J. Fleming, R. Solathie, S. G. Wyllie and M. E. H. Howden, Comp. Biochem. Physiol. 53B, 267 (1976).
- 6. D. S. H. Smith, A. B. Turner and A. M. Mackie, J. C. S. Perkin I, 1745 (1973).
- 7. I. Kitagawa, M. Kobayashi and T. Sugawara, *Chem. Pharm. Bull. 26*, 1852 (1978) and references cited therein.
- 8. Y. M. Sheikh, B. M. Tursh and C. Djerassi, J. Amer. Chem. Soc. 94, 3278 (1972).
- 9. F. B. Hirshmann, D. M. Kantz, S. S. Deshmane and M. Hirshmann, *Tetrahedron 27*, 2041 (1971) and references cited therein.
- 10. Details on the structure of 6 will be published elsewhere.
- 11. J. W. Blunt and J. B. Stothers, Org. Magn. Res. 9, 439 (1977).

(Received in UK 5 December 1978)